Geometric Phase for Non-Hermitian Hamiltonians and Its Holonomy Interpretation∗

نویسندگان

  • Hossein Mehri-Dehnavi
  • Ali Mostafazadeh
چکیده

For an arbitrary possibly non-Hermitian matrix Hamiltonian H, that might involve exceptional points, we construct an appropriate parameter space M and a lines bundle Ln over M such that the adiabatic geometric phases associated with the eigenstates of the initial Hamiltonian coincide with the holonomies of Ln. We examine the case of 2× 2 matrix Hamiltonians in detail and show that, contrary to claims made in some recent publications, geometric phases arising from encircling exceptional points are generally geometrical and not topological in nature. PACS numbers: 03.65.Vf, 03.65.-w

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Class of Adiabatic Cyclic States and Geometric Phases for Non-Hermitian Hamiltonians

For a T -periodic non-Hermitian Hamiltonian H(t), we construct a class of adiabatic cyclic states of period T which are not eigenstates of the initial Hamiltonian H(0). We show that the corresponding adiabatic geometric phase angles are real and discuss their relationship with the conventional complex adiabatic geometric phase angles. We present a detailed calculation of the new adiabatic cycli...

متن کامل

Geometric Phase

The line bundles which arise in the holonomy interpretations of the geometric phase display curious similarities to those encountered in the statement of the Borel-Weil-Bott theorem of the representation theory. The remarkable relationship between the mathematical structure of the geometric phase and the classiication theorem for complex line bundles provides the necessary tools for establishin...

متن کامل

Se p 20 03 The Hilbert - Space Structure of Non - Hermitian Theories with Real Spectra ‡

We investigate the quantum-mechanical interpretation of models with non-Hermitian Hamiltonians and real spectra. After describing a general framework to reformulate such models in terms of Hermitian Hamiltonians defined on the Hilbert space L2(−∞,∞), we discuss the significance of the algebra of physical observables. PACS numbers: 03.65.-w, 03.65.Ca

متن کامل

X iv : h ep - t h / 93 12 17 3 v 1 2 1 D ec 1 99 3 Geometric Phase , Bundle Classification , and Group Representation

The line bundles which arise in the holonomy interpretations of the geometric phase display curious similarities to those encountered in the statement of the Borel-Weil-Bott theorem of the representation theory. The remarkable relation of the geometric phase to the classification of complex line bundles provides the necessary tools for establishing the relevance of the Borel-Weil-Bott theorem t...

متن کامل

Non-Hermitian Hamiltonians with real and complex eigenvalues: An sl(2,C) approach

Potential algebras are extended from Hermitian to non-Hermitian Hamiltonians and shown to provide an elegant method for studying the transition from real to complex eigenvalues for a class of non-Hermitian Hamiltonians associated with the complex Lie algebra A1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008